The Flavone Luteolin, an Endocrine Disruptor, Relaxed Male Guinea Pig Gallbladder Strips

Loren Kline


Background: Luteolin (3',4',5,7-tetrahydroxyflavone) is a flavone with a yellow crystalline appearance present in numerous plants such as broccoli, green chili, and carrot. Luteolin is considered to be an endocrine disruptor with potent estrogen agonist activity and potent progesterone antagonist activity. Luteolin has effects on smooth muscle. Luteolin relaxed guinea pig trachea smooth muscle as it inhibited both phosphodiesterase and reduced intracellular Ca2+. Luteolin also caused vasorelaxation in rat thoracic aorta smooth muscle by inhibiting intracellular Ca2+ release, inhibition of sarcolemmal Ca2+ channels, and activation of K+ channels. Luteolin or its glycosides from artichoke extracts may have an ameliorating effect on irritable bowel syndrome. The purpose of this study was to determine if luteolin had an effect on gallbladder motility.

Methods: An in vitro pharmacologic technique was utilized. Either cholecystokinin octapeptide (CCK) or KCl were used to induce tension in male guinea pig gallbladder strips maintained in Sawyer-Bartlestone chambers. Luteolin relaxed either the CCK- or KCl-induced tension in a concentration dependent manner. Various blockers were added to the chambers to determine which second messenger system(s) mediated the observed relaxation. Paired t-tests were used for statistical analysis. Differences between mean values of P < 0.05 were considered significant.

Results: Treatment of the gallbladder strips with luteolin prior to either KCl or CCK significantly (P < 0.001) decreased the amount of either KCl- or cholecystokinin-induced tension. The 2-aminoethoxydiphenylborane was used to ascertain if the release of intracellular Ca2+ mediated the luteolin-induced relaxation. It significantly (P < 0.001) decreased the amount of luteolin-induced relaxation. To ascertain if PKA mediated the luteolin-induced relaxation, PKA inhibitor 14-22 amide myristolated was used. It significantly (P < 0.01) reduced the amount of luteolin-induced relaxation. Neither KT5823, NG-methyl-L-arginine acetate salt, genistein, tetraethylammonium, nor fulvestrant had a significant effect. To ascertain if PKC mediated the luteolin-induced relaxation, the PKC inhibitors bisindolymaleimide IV and chelerythrine Cl- were used together. They had no significant effect.

Conclusions: Luteolin relaxed cholecystokinin- or KCl-induced tension by blocking extracellular Ca2+ entry as well as intracellular Ca2+ release. In addition, the actions of PKA are also involved in mediating the luteolin effect.

Gastroenterol Res. 2019;12(2):53-59


Luteolin; Flavone; Gallbladder; Smooth muscle; Guinea pig; Calcium; PKA

Full Text: HTML PDF

Browse  Journals  


Journal of Clinical Medicine Research

Journal of Endocrinology and Metabolism

Journal of Clinical Gynecology and Obstetrics


World Journal of Oncology

Gastroenterology Research

Journal of Hematology


Journal of Medical Cases

Journal of Current Surgery

Clinical Infection and Immunity


Cardiology Research

World Journal of Nephrology and Urology

Cellular and Molecular Medicine Research


Journal of Neurology Research

International Journal of Clinical Pediatrics



Gastroenterology Research, bimonthly, ISSN 1918-2805 (print), 1918-2813 (online), published by Elmer Press Inc.                     
The content of this site is intended for health care professionals.

This is an open-access journal distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License, which permits unrestricted
non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Creative Commons Attribution license (Attribution-NonCommercial 4.0 International CC-BY-NC 4.0)

This journal follows the International Committee of Medical Journal Editors (ICMJE) recommendations for manuscripts submitted to biomedical journals,
the Committee on Publication Ethics (COPE) guidelines, and the Principles of Transparency and Best Practice in Scholarly Publishing.

website:   editorial contact:
Address: 9225 Leslie Street, Suite 201, Richmond Hill, Ontario, L4B 3H6, Canada

© Elmer Press Inc. All Rights Reserved.

Disclaimer: The views and opinions expressed in the published articles are those of the authors and do not necessarily reflect the views or opinions of the editors and Elmer Press Inc. This website is provided for medical research and informational purposes only and does not constitute any medical advice or professional services. The information provided in this journal should not be used for diagnosis and treatment, those seeking medical advice should always consult with a licensed physician.